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Abstract: In chemical industries, as paper pulp, quality control is a decisive task for 
competitiveness. Quality prediction is determinant in quality control. However the 
complexity of the production processes, their non-linear and time varying characteristics 
does not allow to develop reliable prediction models based on first principles. New tools 
issued from fuzzy systems and neural networks are being developed to overcome these 
difficulties. In this paper a neuro-fuzzy strategy is proposed to predict bleaching quality by 
predicting the outlet brightness. Firstly, a fuzzy subtractive clustering technique is applied to 
extract a set of fuzzy rules; secondly, the centers and widths of the membership functions are 
tuned by means of a fuzzy neural network trained with backpropagation. This technique 
seems promising since it permits good results with large nonlinear plants. Furthermore, it 
describes the plant using a set of linguistic rules which have the advantage of being closer to 
natural human language, so, more intuitive for operators. Copyright „ 2000 IFAC. 

 
Keywords: pulp industry, fuzzy modelling, neural-networks modeling. 

 
 
 
 

1. INTRODUCTION 
 
Pulp and paper industry is actually subjected to a 
very high demand concerning quality. Pulp 
bleaching, one of its sub-processes, is  a  nonlinear 
process for which there are still poorly understood 
phenomena. It is a sequential process influenced by a 
large number of variables for which the individual 
influences are not well known. First principles 
models do not exist with a sufficient level of 
accuracy. This leads to the development of other kind 
of approaches, such as fuzzy systems and neural 

networks. Fuzzy systems are general approximators, 
capable of accurately representing nonlinear 
processes and including a priori existent knowledge 
about the process (Pedrycz and Waletzky, 1997). 
Fuzzy systems can also be developed from plant data, 
but in this case techniques for establishing the fuzzy 
rules and  tuning them are needed. One way to deal 
with these needs is through fuzzy clustering (Delgado 
,et al., 1998). However one must face the problem 
with the curse of dimensionality of the rule base. This 
problem has been faced by several authors (see for 
example Wang and Rong (1999), Runkler (1998) ). 



 

One important characteristics on the bleaching 
process is its time-varying transport delay, that is 
faced in this work.  
 
The strategy is developed in two phases: firstly, 
subtractive clustering is applied to extract a set of 
fuzzy rules; secondly the membership functions 
(centers and widths) are learned by a neural networks 
trained by backpropagation. The obtained results are 
promising, showing the potential of the technique. 
Furthermore, it describes the plant by a set of 
interpretable linguistic (fuzzy) rules close to the 
natural human language and intuitive for the 
operators. 
 
This paper is organized as follows. Section 2 
describes the two-phase algorithm for fuzzy 
prediction. Section 3 describes briefly of the pulp 
bleaching plant. Section 4 is devoted to the 
description of a possible strategy for dealing with the 
variable time delays. Finally, Section 6 concludes the 
paper pointing out the advantages and limitations of 
the strategy used and the main problems encountered, 
as well as some directions for future work, and a 
possible strategy to include the variable time delays 
in the model. 
 
 

2. THE FARX PREDICTOR STRUCTURE AND 
SUBTRACTIVE CLUSTERING 

 
Given a set of operating data and, possibly, an initial 
set of linguistic rules dictated by experts, a Fuzzy 
Auto-Regressive with Exogenous (FARX) variable 
structure is followed to model the bleaching plant. 
The system is described by a set of rules of Mamdani 
inference type (1): 
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where q is for number of system outputs, p the 
number of inputs and the parameters n1, ..., nq, m1, ..., 
mp, d1, ..., dp are related to the system order and 
discrete pure time delay. Ajki , Bjki and Cji are the 
fuzzy sets (linguistic values) for each output and 
input variables, defined by their membership 
functions:

jijkijki CBA µµµ ,, , i = 1, 2, ..., R. 

 
The parameters n1, ..., nq,  m1, ..., mp, d1, ..., dp are  
properly chosen on the basis of prior knowledge or 
by comparison of different values in terms of some 
criteria. Assuming this problem is solved, the issue 
is: (i) to obtain a set of rules of type (1); (ii) to adjust 
the parameters of the membership functions using 
data collected from the system (2): 
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where N is the number of data samples available for 

the identification purpose and θ is the regression 
vector. 
 
 
2.1. Subtractive Clustering 
 
In order to obtain a set of R rules avoiding the 
problems inherent to grid partitioning, e. g., rule base 
explosion, subtractive clustering is applied (Chiu, 
1994). This technique is employed since it allows a 
scatter input-output space partitioning.  
 
Subtractive clustering is, essentially, a modified form 
of the Mountain Method. Thus, let Z be the data set 
obtained by concatenation of the sets X and Ψ (2). 
Assuming that all the data points are normalized in 
each dimension, the data set Z is bounded by a 
hypercube. In the algorithm, each point is seen as a 
potential cluster center, for which some measure of 
potential is assigned (3): 
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where α=4/ra

2 and ra>0 defines the neighborhood 
radius for each cluster center. Therefore, the potential 
associated to each cluster depends on its distance to 
all of the points, leading to clusters with high 
potential where the neighborhoods are dense. 
 
After computing the potential for each point, the one 
with higher potential is selected as the first cluster 
center. Let z1

* be the center of the first group and P1
* 

its potential. Then, the potential for each point zi
* is 

reduced, especially for the points closer to the center 
of the cluster (4): 
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where β=4/rb

2 and rb>0 represents the radius of the 
neighborhood for which significant potential 
reduction will occur. The radius for reduction of 
potential should be to some extent higher than the 
neighborhood radius to avoid closely spaced clusters. 
Typically, rb=1.5ra. Since the points closer to the 
cluster center will have their potential strongly 
reduced, the probability for those points to be chosen 
as the next cluster is lower. This procedure (selecting 
centers and reducing potential) is carried out 
iteratively, until the stopping criteria is reached: 
 
If Pk

*>εupP1
*  

      Accept zk* as the next cluster center  
                              and  continue 
Otherwise,  
      If Pk

*<εdownP1
*  

            Reject zk
* and finish the algorithm. 

      Otherwise 
            Let dmin be the shortest distance between zk

* and all 
the centers already found 

            If dmin/ra + Pk
*/P1

* ≥ 1 



 

                 Accept zk
* as the next cluster center and 

continue 
           Otherwise 
                 Reject zk

* and assign it the potential  0.0. 
                 Select the point with higher potential  as new 
zk

*. 
                 Repeat the test. 
           End If 
      End If 
End If 
 
There, εup specifies a threshold above which the point 
is selected as a center, without any doubts and εup 

specifies the threshold below which the point is 
definitely rejected. The third case is where the point 
is characterized by a good trade-off between having a 
sufficiently high potential and being distant enough 
from the clusters determined before. Typically, 
εup=0.5  and εup=0.15. 
 
By the end of clustering, a set of fuzzy rules will 
have been obtained. Each cluster will represent a 
rule. However, since the clustering procedure is 
conducted in a multidimensional space, fuzzy sets 
must be obtained. As each axis of the 
multidimensional space refers to a variable, the 
centers of the membership functions for that variable 
are obtained by projecting the center of each cluster 
in the corresponding axis. As for the widths, they are 
obtained on the basis of the neighborhood radius, ra, 
defined while performing subtractive clustering. 
Since Gaussian membership functions are used, their 
standard deviations are computed by (5): 
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2.2. Self-Organization by Fuzzy Neural Network 
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Figure 1: Structure of the fuzzy neural net. 
 
After deriving an initial fuzzy inference system based 
on fuzzy clustering, its parameters, i.e., the centers 
and widths of membership functions must be 
optimized. In this paper, this is accomplished by 
means of training a fuzzy neural network (FNN) 
using standard backpropagation. 
 
The structure of the FNN is presented in Figure 1. 
This structure can be found in (Lin, 1995). There, 

Gaussian membership functions are used. In the 
present work, two-sided membership functions are 
used, in order to allow more flexibility. The fuzzy 
neural network consists of five layers, which are 
described as follows.  
 
Layer 1 contains the input nodes, which represent 
input linguistic variables. This layer simply passes 
the inputs to layer 2.  
 
The nodes in layer 2 are the linguistic terms of each 
input variable, represented by Gaussian membership 
functions. This layer is responsible for the 
fuzzification of the crisp input values (6): 
 

( )

















<

−
−

≤≤
<

−
−

=



























ijRi
ijR

ijRi

ijRiijL

ijLi
ijL

ijLi

j

cx

cx

e

cxc
cx

cx

e
a

,

,
,

2

2

2

2

2 1

σ

σ
 

(6) 

 
where aj

(2) denotes  the activation for each node on the 
second layer, cijL and cijR stand for the left and right 
centers of a two-sided Gaussian, σijL and σijR  refer to 
the left and right standard deviations and xi represents 
the i-th input. In the following, the superscript will 
always stand for the layer number. 
 
In layer 3, each node is assigned to a rule of the fuzzy 
 inference system. The antecedents of each rule are 
defined by setting proper links form nodes at layer 2 
to nodes at layer 3. This layer fires each rule based 
on some fuzzy AND operation. In this work, the 
truncation operator min was used. Normally, an 
algebraic operator, like product, should be used in 
order to apply the gradient for training the neural 
network. The two approaches were tested and, since 
better results were obtained with the operator min, 
despite not being continuous, the operator referred 
was selected. The output of the third layer is as 
follows (7): 
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Since there are some rules that share the same 
consequent, layer 4 integrates those rules using some 
fuzzy OR operation. The nodes at layer 4 define the 
linguistic terms for each output, represented by 
Gaussian membership functions, as in layer 2.  For  
the same reason as in layer 3, a truncation operator, 
namely max, was used (8): 
 

( ) ( ) ( ) ( )( )3334 ,...,,
21 nkkkl aaamaxa =  (8) 

 
Layer 5 is the output layer. The role of this layer is to 
perform defuzzification, i.e., convert fuzzy numbers 
into crisp numbers. In this work, an adaptation of the 



 

center of area defuzzification method is used, in 
order to cope with two-sided Gaussian functions and 
to incorporate the effect of the widths into the 
defuzzification  strategy (9): 
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As in layer 2, clmL, σlmL, clmR, and σlmR represent the 
left and right parameters of the two-sided Gaussian 
membership function. 
 
As stated before, the objective of the presented FNN 
is to perform optimization of the centers and widths 
of the Gaussian membership functions. For that 
matter, supervised learning is carried out based on 
acquired data (2), using standard backpropagation.  
The goal is to minimize the error function (10): 
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where ym stands for the desired network output and 
am

(5) is the actual network output for the m-th output. 
Assuming that wij is the parameter to adjust, the 
general learning rule is as (11): 
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where lr is the learning rate. 
 
Based on equations (10) and (11), the expressions for 
adapting the centers and widths of the membership 
functions are presented below. 
 
Layer 5. In this layer, the centers and widths of the 
output membership functions are updated. This is 
conducted by (12), (13) and (14). 
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Layer 4. In this layer, there are no parameters to 
update. Therefore, only the error signals (δ) need to 
be computed for backpropagation (15): 
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Layer 3 . As in layer 4 only the error signals need to 
be computed (16): 
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Layer 2. In layer 2, the centers and widths of the 
input membership functions are updated according to 
eqs. (17), (18), (19), (20) and (21). 
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3. PULP BLEACHING PLANT 
 
Bleaching is done to decolorize the lignin present in 
wood fibbers. Chemicals are added, which react with 
the unbleached chromophores producing the desired 
bleached chromophores so that pulp properties can 
satisfy the standards demanded by paper industry. A 
major concern is to obtain satisfactory outlet 
brightness. 
 
The present plant uses a Totally-Chlorine Free (TCF) 
bleaching sequence. Some TCF sequences have been 
used in the past years. In our case an EOP/P sequence 
is conducted, as presented in Figure 2 (Caima, 1994).  
 
 
3.1.  The Process 
 
After cooking the wood with acid for delignification, 
washing and screening the pulp, the bleaching stage 
is ready to begin. First of all, the pulp is washed in 
washers 1 and 2. Then, in the EOP (Extraction with 
NAOH, Oxygen and Hydrogen Peroxide) stage the 
pulp is mixed with chemicals, namely hydrogen 
peroxide, oxygen (bleaching agents), caustic soda (to 
adjust the pH of the reacting mixture), and sodium 
silicate (peroxide stabilizer). This mixture reacts 
within towers 1 and 2 for approximately 4 hours. 
Before the P (extraction with Hydrogen Peroxide) 
stage, the pulp is washed in washer 3 in order to 
recover chemicals and energy. In the P stage the 
same chemicals as before, except for oxygen are 
added.  
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Figure 2: The EOP/P sequence. 
 
The reaction takes place in tower 3 for approximately 
2 hours. After this residence time, the pulp is washed 
in washer 4 and is then conducted to the drying 
section where it stays for about 1 hour. The total 
bleaching time, from washers 1 and 2 until dried pulp 
is obtained takes about 8 hours.  
 
The final bleaching quality is influenced by a great 
deal of variables. According to experts’ knowledge 
the variables that have a stronger influence on the 
final pulp quality are inlet brightness, inlet pulp flow, 
inlet permanganate number (which is a lignin 
concentration measurement), hydrogen peroxide in 
both of the stages and inlet pulp flow.  
 
 
3.2.  Brightness Analysis for Quality Classification 
 
There are a few high-level rules that give some 
insight on the final brightness achieved: it increases 
with peroxide flow; it increases with pH; it increases 
with the consistency; it increases with temperature, 
until some threshold; it increases with inlet pulp; it 
decreases with inlet permanganate number. This 
information can be compared with the set of 
linguistic rules obtained by the fuzzy inference 
system. 
 
In (Duarte, 1995), information on the delay times 
relating each input variable and the outlet brightness 
is presented. There, it is said that the delay time from 
inlet brightness to outlet brightness is 7-8 hours, 
which corresponds to the bleaching time referred 
above. For inlet pulp flow and inlet permanganate 
number the delay time should be the same. 
Concerning the peroxide flow in the P stage, the 
effect of a change on it affects outlet brightness from 
3 to 5 hours later. For the peroxide flow in the EOP 
stage, the delay time should correspond to time 
elapsed since inlet pulp is washed in washers 1 and 2. 
So, a delay time of 6.5-7.5 hours is assumed. 
 

4.  RESULTS 
 
Some of the measured variables are not sufficiently 
excited. Thus, their contribution for the achieved 
bleaching quality is not easily assessed only with 
measurements. Moreover, according to the experts’ 
experience, the most important input variables are 
peroxide flow, inlet brightness and pH. Therefore, 
these are the input variables used to model the plant. 
Some experiments were carried out with the full set 
of variables. However, the inclusion of those 
variables did not bring any better results (actually, 
some cases happened to worsen the model). 
 
The fuzzy inference system is obtained from the 
input-output measurements using subtractive 
clustering and tuning the membership functions with 
the algorithm in section 2. The sampling interval was 
defined in the mill as one hour; this sampling interval 
seems to be sufficient since the system’s dynamics 
are very slow. Simulations were carried out with 
N=976 training samples. The parameter ra for 
subtractive clustering was defined with the value ra 
=0.35, leading to R=53 rules. Figure 3 presents the 
training results and Figure 4 shows model validation. 
There, the continuous line represents real process 
data, whereas the dashed line represents the model 
output. The variable depicted is the final brightness 
achieved, as described in section 3.1. 
  
For the training data, the root mean square error 
(rmse) was equal to 0.165. However, for the 
validation data the rms error is slightly higher: rmse 
= 0.254. We can, therefore, conclude that the model 
obtained does not have satisfactory generalization 
capabilities. Some possible reasons for that are noise 
in measurements, inadequate sampling intervals or 
inconsistent training and validation sets, resulting 
from the variable time delay of the system. As stated 
above, the total pulp residence time varies from 7 to 
10 hours (depending on the inlet pulp flow), 
according to the experts. The described technique 



 

seems not to be able to satisfactorily cope with this 
situation. Thus, a strategy for capturing the effect of 
the variable time delay is needed. The inlet pulp flow 
and the levels in the towers mainly influence this 
delay. Consequently, it is the authors’ opinion that 
including those variables in the model would make it 
possible to capture the transport delays. Including 
those variables and extra input variable regression 
would give the neuro-fuzzy system enough 
information to find a proper structure, i.e., select the 
right past input from the regression set, based on 
measurements for the levels and inlet pulp. However, 
as can be seen, this scheme was not completely 
successful, perhaps due to the absence of 
measurements for the level in tower 1. Yet, if one has 
present the difficulties and uncertainties related to the 
pulp bleaching plant and the (strong) presence of 
noise in the industrial environment, an rms error of 
0.254, can be found  satisfactory. 
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Figure 3. Validation :          Process    - - - FNN output  
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Figure 4. Validation :          Process    - - - FNN output  
 
 

5.  CONCLUSIONS 
 
A predictor for the output brightness of a bleaching 
plant (paper pulp industry), in a neuro-fuzzy 
framework, is developed in two phases:  subtractive 
clustering to obtain a set of fuzzy rules and then a 
fuzzy neural network is trained to optimally tune the 
membership parameters using backpropagation. 
Some problems were encountered related to the 
variable pure time delay of the process which limited 
the accuracy of the obtained model. The system may 
also be time varying.  
 
Another problem comes from the quality of industrial 
data. It seems that for a deeper foundation of the 
methodology, more data, with lower sampling 
interval, should be used, in order to capture the short 
term dynamics of the process. This means more and 

better instrumentation. However the shown results 
illustrate the potentialities of the proposed 
methodology.  
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